
Parallelizing String Similarity Join Algorithms

Ling-Chih Yao and Lipyeow Lim

University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
{lingchih,lipyeow}@hawaii.edu

Abstract. A key operation in data cleaning and integration is the use
of string similarity join (SSJ) algorithms to identify and remove dupli-
cates or similar records within data sets. With the advent of big data,
a natural question is how to parallelize SSJ algorithms. There is a large
body of existing work on SSJ algorithms and parallelizing each one of
them may not be the most feasible solution. In this paper, we propose a
parallelization framework for string similarity joins that utilizes existing
SSJ algorithms. Our framework partitions the data using a variety of
partitioning strategies and then executes the SSJ algorithms on the par-
titions in parallel. Some of the partitioning strategies that we investigate
trade accuracy for speed. We implemented and validated our framework
on several SSJ algorithms and data sets. Our experiments show that our
framework results in significant speedup with little loss in accuracy.

1 Introduction

Given a string-based data collection and a similarity measure, the string simi-
larity join (SSJ) problem takes as input two sets of strings and returns all pairs
of strings from the two data sets where their similarity value are above a user-
specified threshold. Many real-world applications apply SSJ for data cleaning,
duplicate detection, data integration and entity resolution. Other less obvious
applications include nearest-neighbor-like queries in web search, social media,
and even recommender systems. The SSJ problem is well studied in the litera-
ture with a plethora of algorithms proposed [15, 5, 9, 3, 8].

With the advent of big data, a modern challenge in SSJ processing is the rapid
growth of the size of the data sets. For example, in 2010, the size of the Google N-
gram dataset has exceeded 1 trillion data items [13], and the amount of log data
that Facebook receives each day exceeds 6TB [2]. A natural question is how to
parallelize SSJ processing to handle the large data sets we have today. Two recent
studies [13, 12] have utilized MapReduce and Spark for parallel SSJ processing.
Nevertheless, there is a large body of work on sequential SSJ algorithms with new
ones added every year. Parallelizing any complex algorithm is hard in general
and parallelizing each of those sequential SSJ algorithms is clearly a challenge
with or without using frameworks like MapReduce and/or Spark.

In this paper, we investigate a parallelization approach for existing SSJ al-
gorithms that first partitions the data, run the existing (in-memory) SSJ algo-
rithms on each partition in parallel, and finally merge the results. In particular,

we propose a variety of data partitioning strategies and investigate their impact
on parallelizing existing SSJ algorithms. The contribution of this paper are as
follows.

– We reduce the unnecessary computation by partitioning dissimilar data into
different partitions.

– We show that partitioning strategies can achieve significant speedup with
little loss in accuracy.

– We can parallelize any sequential string similarity algorithm without modi-
fications on the original algorithms with our data partitioning strategies.

– Our experimental evaluation show that our partitioning strategies achieve
excellent performance on several real-world data sets.

The rest of paper is organized as follows. We give a problem definition and related
work in Section 2 and Section 3. We describe our parallelization framework
and the different strategies of data partitioning in Section 4. We present the
experiment results in section 5. And we conclude the paper in Section 6.

2 Preliminaries

Given two data sets R and S, similarity function sim, and threshold δ, the string
similarity join operator returns all similar pairs (x, y), where x ∈ R, y ∈ S, and
sim(x, y) > δ. We define a string-based record as a set of tokens by mapping
each unique string in the data sets to a unique token. We use token-based
similarity functions to compute the similarity of two records. The popular
token-based functions are Jaccard, Cosine, Dice, and Overlap (where x and y
denote the input sets of string tokens):

Overlap: Olp(x, y) = |x ∩ y| Jaccard: Jac(x, y) = |x∩y|
|x∪y|

Dice: Dice(x, y) = 2|x∩y|
|x|+|y| Cosine: Cos(x, y) = |x∩y|√

|x||y|

For example, consider the strings ’Yesterday rained during the afternoon’
and ’Yesterday it rained during the afternoon’. We first break them into string
tokens x: {Yesterday, rained, during, the, afternoon} and y: {Yesterday, it,
rained, during, the, afternoon}, respectively, then we can measure their simi-
larity by similarity functions: Olp(x, y) = 5, Jac(x, y) = 5

6 , Dice(x, y) = 10
11 , and

Cos(x, y) = 5
5.477 .

3 Related work

There are many SSJ algorithms proposed due to the inefficiency of determining
the similar pairs by examining every string pair. The proposed algorithms are
classified into two categories: approximate SSJ and exact SSJ.

Approximate SSJ algorithms trade the accuracy for the efficiency by reduc-
ing the dimensionality of the input vectors. Local-Sensitive Hashing (LSH) is
a common technique for reducing the input’s dimensionality by hashing input

data.In 2012, Satuluri and Parthasarathy [10] utilize a Bayesian approach to
optimize a LSH-based SSJ algorithm. In 2017, Sohrabi and Azgomi proposed a
parallel SSJ algorithm based on the LHS techniques [11].

Exact SSJ, which output the exact result pairs, has received more attention
partly because approximate SSJ algorithms often produce non-trivial errors in
practical applications. The common technique is generating signatures and then
using inverted index to filter dissimilar pairs. AllPair [1], PPJoin+ [16], and
AdaptJoin [14] are popular prefix-filtering algorithms that generate signatures
based on the prefix of strings. Partition-based algorithms generate signatures by
partitioning strings into non-overlapping subsets [6, 9].

Sequential SSJ algorithms are inadequate for very large data sets such as data
from network monitoring, internet of things, internet-scale applications. Ver-
nica et. al. proposed an efficient parallel exact SSJ algorithm based on Hadoop
MapReduce [13] in 2010. It partitions data by their prefix and process the par-
titions in parallel. Sun et. al. proposed Dima, a similarity-based query system
on Spark, in 2017 [12]. It partitions data by global and local index, so the target
range and data transmission can be decreased.

There are currently many (sequential) SSJ algorithms with new algorithms
invented almost every year. Parallelization of the sequential string similarity al-
gorithms remains a very challenging task – many of them do not fit nicely onto
the Map-Reduce framework utilized by Hadoop and Spark. Instead of paral-
lelizing each existing sequential SSJ algorithm or inventing a new parallel SSJ
algorithm, our work investigate data partitioning (and hence parallelization)
strategies for parallel processing of the SSJ problem using any existing sequen-
tial SSJ algorithm as a sub-routine.

4 Parallelizing String Similarity Join

In this paper, we propose to parallellize the SSJ operation by first partitioning
the data into partitions or buckets in a one-time offline phase. Each partition
is stored locally in a compute node. In the online SSJ processing phase, we
execute the SSJ algorithm at each compute node in parallel. We then consolidate
the results from the compute nodes to be returned to the user. A key idea of
our framework is to avoid doing cross-partition joins by leveraging a suitable
partitioning strategy to partition the data so that similar records will be co-
located in the same partition. Hence, there will be some loss of accuracy and our
framework will trade-off accuracy for speed. In general we only need to partition
data once and the same partitions are reused for multiple queries. Next, we
describe the partitioning strategies that are the thrust of this paper.

4.1 Partitioning by the First Token

For this partitioning method, we determine the partition identifier (ID) of a
record by using the first token of each record. The assumption is that similar
record pairs are very likely to have same first token. Since the number of distinct

first tokens can be quite large, we use a variety of techniques to limit the number
of partitions: (1) compute a hash value of the first token, (2) use the first letter of
the first token, and (3) use the first k letters of the first token. In our experiment,
we use the first letter (strategy First) , and the first two letters of the first token
(strategy Second).

4.2 Partitioning by Keyword

Previous research [16, 6, 1] have shown that low frequency tokens have higher
power to filter dissimilar data. In this partitioning strategy we use the token
with least frequency in each record to determine the partition ID. We first build
a dictionary containing all tokens in the data set and their occurrence frequency.
For each record, we use the dictionary to find the token with the smallest fre-
quency and use that token to compute the partition ID.

4.3 Partitioning by the Prefix

Prefix filtering is a popular method to filter dissimilar data [16, 6, 1, 14] in SSH
algorithms. It is proposed in SSJ algorithm SSJoin [4] and extended to prefix-
based framework in ALLPair algorithm [1]. The key idea is to first sort the
tokens in each record according to some predetermined order and then if a pair
of records do not share any token in their prefix, they must be dissimilar. For
this partitioning strategy, we first sort the tokens in each record, and then use
a prefix of the record to compute the partition ID.

5 Experiments

For our experiments, we implemented our parallelization framework using the
Message Passing Interface (MPI) [7] and Python. For the sequential string simi-
larity algorithm to be executed on each compute node, we run the executable file
of the original author’s implementation of the algorithm for PPjoin+ [16] and
AdaptJoin [14]. We conducted our experiments on a Cray CS300 high perfor-
mance computing (HPC) clusters with 276 total nodes. Each node contains two
10-core Intel Ivy Bridge, 2.8GHz processors and 118GB usable RAM. We per-
formed extensive experiments using three data sets, two existing SSJ algorithms,
different numbers of cores and different thresholds. Due to the space limitation,
we only show part of the results.

We use three real-world data sets in our experiments: DBLP, a collection of
author names and titles from computer science bibliography; QueryLog, query
strings randomly selected from AOL Query Log [14]; and Enron, a collection of
the titles and bodies from Enron emails [14].

Table 1 shows the basic information of the data sets. Column Records shows
the number of records; columns lavg, lmin and lmax show the average, minimal,
and maximal token size, respectively; columns PPJoin+ and AdaptJoin show
the sequential running time of these two algorithms; and column Result Pairs

Records lavg lmin lmax File Size PPJoin+ AdaptJoin Result Pairs

DBLP 3,422,478 16.48 6 233 370M - 60.57s 131,743
QueryLog 1,208,844 20.44 1 500 26m - 6.44s 20,603

Enron 517,431 133.57 1 3162 435M - 65.62s 1,332,622
Table 1. Information on the data sets. The result pairs are for threshold δ = 0.9.

First Second Keyword Prefix

DBLP 7.1 (98.4%) 9.4 (98.4%) 8.2 (96.7%) 3.6 (98.1%)
QueryLog 6.4 (67.9%) 2.6 (66.5%) 8.1 (96.8%) 4.4 (98.9%)
Enron 2.5 (97.6%) 3.5 (97.6%) 5.5 (85.3%) 3.9 (93.0%)

Table 2. The speedup and accuracy in parenthesis of our parallel SSJ framework
using different strategies on 11 processors. The AdaptJoin SSJ algorithm with Jaccard
threshold 0.9 was used.

show the similar pairs with Jaccard threshold 0.9. Note that PPjoin+ did not
generate any results because it exited with a segmentation fault.

Table 2 shows the speedup and accuracy of our parallel SSJ framework. We
can see Keyword worked best on average with different data sets, and the best
speedup happened in Second on DBLP. First worked worse than Keyword but
the data partitioning time is much faster. Prefix is slowest (because each record
may partition to more than one partitions and cause duplicate computation) but
the accuracy is the most stable.

First and Second worked well on DBLP and Enron with accuracy more
than 97%; but they worked worse on QueryLog with accuracy around 66%. It
is because DBLP starts with authors’ name and Enron start with the titles of
emails, so their first tokens have more filter power. Keyword worked worse on
Enron as the average token size in Enron is 133.51, one keyword is not enough
to filter dissimilar data. Note that accuracy of Prefix cannot reach 100% since
we only retrieved two tokens instead of whole prefix (for reducing the data
partitioning time.)

6 Conclusion

In this paper, we studied data partitioning strategies for parallelizing existing
sequential SSJ algorithms. We partitioned the data set into partitions using a va-
riety of strategies based on the first k letters of the first token, the least frequent
keyword, and the prefix of each record. These partitions were then processed in
parallel with existing SSJ algorithms and the results merged together for the
user. We performed extensive experimental validation and observed that differ-
ent data sets achieve the best accuracy and performance with different strategies.
Users can choose different strategies for different data sets depending on the fil-
tering power of the partitioning strategies on that data set. The right strategy
can result in significant speedup with little loss of accuracy.

References

1. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: WWW.
pp. 131–140. ACM (2007)

2. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A compari-
son of join algorithms for log processing in mapreduce. In: SIGMOD. pp. 975–986.
ACM (2010)

3. Bocek, T., Hunt, E., Stiller, B., Hecht, F.: Fast similarity search in large dictio-
naries. University (2007)

4. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in
data cleaning. In: ICDE. pp. 5–5. IEEE (2006)

5. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: VLDB. vol. 23, pp. 426–435 (1997)

6. Deng, D., Li, G., Wen, H., Feng, J.: An efficient partition based method for exact
set similarity joins. VLDB 9(4), 360–371 (Dec 2015)

7. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., et al.: Open mpi: Goals,
concept, and design of a next generation mpi implementation. In: European Paral-
lel Virtual Machine/Message Passing Interface Users Group Meeting. pp. 97–104.
Springer (2004)

8. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Sri-
vastava, D., others: Approximate string joins in a database (almost) for free. In:
VLDB. vol. 1, pp. 491–500 (2001)

9. Li, G., Deng, D., Wang, J., Feng, J.: Pass-join: A partition-based method for
similarity joins. VLDB 5(3), 253–264 (2011)

10. Satuluri, V., Parthasarathy, S.: Bayesian locality sensitive hashing for fast similar-
ity search. VLDB 5(5), 430–441 (Jan 2012)

11. Sohrabi, M.K., Azgomi, H.: Parallel set similarity join on big data based on
Locality-Sensitive Hashing. Science of Computer Programming 145, 1–12 (2017)

12. Sun, J., Shang, Z., Li, G., Deng, D., Bao, Z.: Dima: A distributed in-memory
similarity-based query processing system. VLDB 10(12), 1925–1928 (2017)

13. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapRe-
duce. In: SIGMOD. pp. 495–506. ACM (2010)

14. Wang, J., Li, G., Feng, J.: Can we beat the prefix filtering?: an adaptive framework
for similarity join and search. In: SIGMOD. pp. 85–96. ACM (2012)

15. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. VLDB 1(1), 933–944 (2008)

16. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate
detection. In: WWW. pp. 131–140. ACM (2008)

