
ICS621 Homework 3: Amortized Analysis & Dynamic Program-
ming

Problem 17-3 from CLRS. Consider an ordinary binary search tree augmented by adding to
each node x the attribute x.size giving the number of keys stored in the subtree rooted at x.
Let α be a constant in the range 1/2 ≤ α < 1. We say that a given node x is a α-balanced if
x.left.size ≤ α · x.size and x.right.size ≤ α · x.size. The tree as a whole is α-balanced if every
node in the tree is α-balanced. The following amortized approach to maintaining weight-balanced
trees was suggested by G. Varghese.

a) A 1/2-balanced tree is, in a sense, as balanced as it can be. Given a node x in an arbitrary
binary search tree. show how to rebuild the subtree rooted at x so that it becomes 1/2-
balanced. Your algorithm should run in time Θ(x.size), and it can use O(x.size) auxiliary
storage.

b) Show that performing a search in an n-node α-balanced binary search tree takes O(lg n)
worst-case time.

For the remainder of this problem, assume that the constant α is strictly greater than 1/2. Suppose
that we implement Insert and Delete as usual for an n-node binary search tree, except that after
every such operation, if any node in the tree is no longer α-balanced, then we “rebuild” the subtree
rooted at the highest such node in the tree so that it becomes 1/2-balanced. We shall analyze this
rebuilding scheme using the potential method. For a node in a binary search tree T , we define

∆(x) = |x.lefr.size− x.right.size|,

and we define the potential of T as

Φ(T ) = c
∑

x∈T :∆(x)≥2

∆(x),

where c is a sufficiently large constant that depends on α.

c) Argue that any binary search tree has nonnegative potential iand that a 1/2-balanced tree
has potential 0.

d) Suppoise that m units of potential can pay for rebuilding an m-node subtree. How large must
c be in terms of α in order for it to take O(1) amortized time to rebuild a subtree that is not
α-balanced?

e) Show that inserting a node into or deleting a node from an n-node α-balanced tree costs
O(lg n) amortized time.i
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Problem 15-6 from CLRS. Planning a company party. Professor Stewart is consulting for
the president of a corporation that is planning a company party. The company has a hierarchical
structure; that is, the supervisor relation forms a tree rooted at the president. The personnel office
has ranked each employee with a conviviality rating, which is a real number. In order to make the
party fun for all attendees, the president does not want both an employee and his or her immediate
supervisor to attend.

Professor Stewart is given the tree that describes the structure of the corporation, using the left-
child, right-sibling representation described in Section 10.4. Each node of the tree holds, in addtion
to the pointers, the name of an employee and that employee’s conviviality ranking. Describe an
algorithm to make up a guest list that maximizes the sum of the conviviality ratings of the guests.
Analyze the running time of your algorithm.
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