
ICS621 Homework 2: Water Jugs & AVL Trees

Problem 8-4 from CLRS. Suppose that you are given n red and n blue water jugs, all of different
shapes and sizes. All red jugs hold different amounts of water, as do the blue ones. Moreover, for
every red jug, there is a blue jug that holds the same amount of water, and vice versa. Your task is
to find a grouping of the jugs into pairs of red and blue jugs that hold the same amount of water.
To do so, you may perform the following operation: pick a pair of jugs in which one is red and
one is blue, fill the red jug with water, and then pour the warer into the blue jug. This operation
will tell you whether the red or the blue jug can hold more water, or they have the same volume.
Assume that such a comparison takes one time unit. Your goal is to find an algorithm that makes a
minimum number of comparisons to determine the grouping. Remember that you may not directly
compare two red jugs or two blue jugs.

a) Describe a deterministic algorithm that uses Θ(n2) comparisons to group the jugs into pairs.

b) Prove a lower bound of Ω(n lg n) for the number of comparisons that an algorithm solving
this problem must make.

c) Give a randomized algorithm whose expected number of comparisons is O(n lg n), and prove
that this bound is correct. What is the worst-case number of comparisons for your algorithm?

Problem 13-3 from CLRS. An AVL tree is a binary search tree that is height balanced: for
each node x, the heights of the left and right subtrees of x differ by at most 1. To implement an
AVL tree, we maintain an extra attribute in each node: x.h is the height of node x. As for any
other binary search tree T , we assume that T.root points to the root node.

a) Prove that an AVL tree with n nodes has height O(lg n). (Hint: Prove that an AVL tree of
height h has at least Fh nodes, where Fh is the hth Fibonacci number.)

b) To insert into an AVL tree, we first place a node into the appropriate place in binary search
tree order. Afterward, the tree might no longer be height balanced. Specifically, the heights of
the left and right children of some node might differ by 2. Describe a procedure Balance(x),
which takes a subtree rooted at x whose left and right children are height balanced and have
heights that differ by at most 2, i.e., |x.right.h− x.left.h| ≤ 2, and alters the subtree rooted
at x to be height balanced. (Hint: Use rotations.)

c) Using part (b), describe a recursive procedure AVL-Insert(x, z) that takes a node x within
an AVL tree and a newly created node z (whose key has already been filled in), and adds z
to the subtree rooted at x, maintaining the property that x is the root of an AVL tree. As
in Tree-Insert from Section 12.3, assume that z.key has already been filled in and that
z.left = NIL and z.right = NIL; also assume that z.h = 0. Thus, to insert the node z into
the AVL tree T , we call AVL-Insert(T.root, z).

d) Show that AVL-Insert, run on an n-node AVL tree, takes O(lg n) time and performs O(1)
rotations.

1

