Lecture 11 Binomial Heaps

Feb 12, 2014

A Binomial tree B_{k} of degree $k \quad$ Properties of a Binomial Tree is defined recursively as follows.

Note that the order of the child nodes are significant.

1. B_{k} has 2^{k} nodes.
2. B_{k} has height k.
3. B_{k} has $\binom{k}{i}$ at depth $i=0, \ldots, k$.
4. Root of B_{k} has degree k which is maximum over all nodes.
5. The subtree rooted at the i-th child of the root of B_{k} is a binomial tree B_{i}.
\Rightarrow Maximum degree in an n-node binomial tree is $\lg n$.

A Binomial Heap is a set of binomial trees such that

1. each binomial tree is heapordered,
2. there is at most one B_{k} for a given k.
\Rightarrow The binomial heap for n items contains one binomial tree for each 1-bit in the binary representation of n. If the i-th bit is set, then the corresponding binomial tree is B_{i}, where the least significant bit occurs at $i=0$.

Example. The binomial heap for 13 items (binary 1101) is shown below.

The root nodes of all the binomial trees in the binomial heap are chained together in a doubly-linked circular list called the root list. The children of each node are also chained together in a doubly-linked circular list to facilitate merging.

Minimum (H) Iterate through the root list to find the minumum root. Root list has at most $\lg n$ nodes.
Union $\left(H_{1}, H_{2}\right)$ Merge the two root list in order of root degrees. Iterate through merged root list and merge the binomial trees analogous to binary addition. Merging two binomal trees take $O(1)$ time. There are $O\left(\lg n_{1}+\lg n_{2}\right)=O\left(\lg \left(n_{1}+n_{2}\right)\right)$ trees to merge.
Insert (H, x) Make x a single node binomial heap and union with H.
ExtractMin (H) Find Minimum (H), remove minimum root, make its children into a new binomial heap, and union with H.
DecreaseKey (H, x, k) Update x.key to k, and bubble x up to maintain heap order.
Delete (H, x) Decrease key of x to $-\infty$, and extract minimum.

Operation	Binary Heaps	Binomial Heaps	Fibonacci Heaps
Insert	$O(\lg n)$	$O(\lg n), O(1)^{A}$	$O(1)$
Minimum	$O(1)$	$O(\lg n)$	$O(1)$
ExtractMin	$O(\lg n)$	$O(\lg n)$	$O(\lg n)^{A}$
Delete	$O(\lg n)$	$O(\lg n)$	$O(\lg n)^{A}$
DecreaseKey	$O(\lg n)$	$O(\lg n)$	$O(1)^{A}$
Union	$O(n)$	$O(\lg n), O(1)^{A}$	$O(1)$

